
Project Apricorn
Interactive Pokéball with Radio

Frequency Identification
Rebecca Casimir, Kalindi Desai, Trey Sandefur,

and Darren Yong

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,

32816-2450

Abstract — Project Apricorn is defined by the interactive
experience created between the user and a Pokéball that
utilizes radio frequency identification (RFID) to
communicate between the user and system. Orlando is
known for being the home of many themed entertainment
parks and having close ties with the University of Central
Florida, Project Apricorn is designed to be an extension to
the interactive experience. The Pokéball will feature an
integrated printed circuit board with a RFID transceiver
which will relay information to the base station which will be
connected to a database to determine the user's identity to
access interactive software selection.
Index Terms — interactive, interface software,

microcontroller, signal detection, wireless communication.

I. INTRODUCTION

Project Apricorn explores how the guest experience can
be improved in themed entertainment environments by
increasing active immersion, and improving interactivity
through the use of more advanced technology. The land
that Apricorn lives within is based in the world of
Pokémon [3], the highest-grossing media franchise of all
time. The core of the guest experience lies in the use of
handheld radio frequency identification assemblies,
modeled after the iconic Pokéball from the world of
Pokémon. In this land, you become a trainer, and get to
gain your own Pokémon, and battle with them just as it's
shown in the video games, movies, television programs,
and other media. Your story begins at the Pokécenter (#1
on Fig. 1.), where you can gain your first Pokéball and
your first Pokémon. In the Pokécenter, the guests are
walked through an experience that is modeled after the
source material.. As guests begin to be immersed within
their own Pokémon story, the embedded RFID printed
circuit board (PCB) begins an initialization protocol that
connects to a system-wide MySQL database. Once this
experience is done, the guests can travel throughout the

land and begin battling with their own Pokémon (#2 on
Fig. 1.), and write their own Pokémon story. Apricorn
serves as a proof-of-concept project on how a system wide
deployment could be approached. Described below is a
systematic approach to designing, engineering, and
implementing Project Apricorn’s Pokéball PCB, base
station, and MySQL database battle experience. .

Fig. 1. Ideation of a Pokémon themed land at the Universal
Studios Orlando theme park.

II. HARDWARE COMPONENTS

The hardware components consist of two major entities,
the handheld Pokéball assembly and base station. The
base station is a home beacon for all handheld devices to
communicate with throughout the land. The Pokéball’s
core comes in the form of an RFID transceiver to transmit
and receive data to-and-from the base station. Fig. X.
outlines the overall block diagram of Project Apricorn.
The major hardware components are further explored and
detailed in subsections below. .

Fig. 2. Project Apricorn Overall Block Diagram

A. Pokéball Shell

This project's foremost focus is on the guest interaction
occurring via the handheld RFID transceiver assembly.
This required necessary housing for the assembly to reside
within to provide adequate protection for the sensitive
electronic components. The group elected to 3D print this
housing utilizing Polycarbonate (PC) filament via printers
provided by AOA at their Winter Park Headquarters. The
housing itself is modeled after the famous standard
Pokéball found in the world of Pokémon. The assembly
was modeled within the AutoDesk Fusion360 modeling
software. Fusion360 provided the robust modeling tools
and testing environments that the group needed to ensure
that the assembly was adequately designed prior to
moving into the 3D printing phase.

The 3D printed assembly comes in the form of 6 (six)
major articles:

TABLE I. Pokéball housing article descriptions

Article Description

(i) Lower Interior Shell Foundational piece of the
assembly that directly
connects the PCB to its
enclosure and provides
rigid support to the
internal electronics

(ii) Upper Interior Shell Upper connecting piece of
the PCB enclosure that
connects articles (ii) and
(v). Provides total
protection to the internal
electronic components

(iii) Lower Exterior Shell White colored exterior
decorative piece that
molds to article (ii) to
resemble iconic shape of
the standard Pokéball

(iv) Upper Exterior Shell Red colored exterior
decorative piece that
molds to article (i) to
resemble the iconic shape
of the standard Pokéball

(v) Locking Rods Cylindrical rods that
connect articles (i) and
(ii). Holds down PCB
between articles (i) and
(ii) via non-conductive
padding material

(vi) Ornate Button Non-functioning white
decorative piece

All 6 (six) articles come together via the use of a JB
Weld bonding agent to provide sufficient support and
rigidity to the total assembly for the sake of the
presentation demo. The articles were sanded, primed,
painted, and coated to stay as true to the source material as
possible.

Fig. 3. Pokéball Shell Designed and Rendered in Fusion360

B. Pokéball Printed Circuit Board

Fig. 4. Pokéball PCB Block Diagram

Our printed circuit board (PCB) features 7 (seven) major
blocks:

(I) Power Circuitry

(II) Reset Switching Circuit

(III) JTAG Pin Header Circuitry

(IV) 24MHz Crystal Oscillator Circuitry

(V) 32KHz Crystal Oscillator Circuitry

(VI) MicroController Circuitry

(VII) 915MHz Antennas & Impedance Matching

I. Power & Voltage Regulation

The main purpose of the power circuitry is to provide
voltage regulation, electrostatic discharge (ESD)
protection, and filtering of unwanted noise in the system.
The power is provided via a single 3.0V Lithium-Cobalt
Oxide coin cell battery. This 3.0V is then boosted via a
TPS61291 Low Iq Boost Converter manufactured by
Texas Instruments. This boosts our voltage to 3.3V and
provides power to all subsystems within our PCB. This
component was selected due to its remarkable efficiency
of both boosting and regulating the output voltage under
extreme circumstances.

TABLE II. Voltage regulator efficiency

𝑉
𝑖𝑛

𝑉
𝑜𝑢𝑡

𝐼
𝑜𝑢𝑡

Efficiency

1.2V 3.3V 10mA 85%

1.8V 3.3V 10mA 90%

2.5V 3.3V 10mA 94%

3.0V 3.3V 10mA 96%

1.2V 3.3V 100mA 85%

1.8V 3.3V 100mA 91%

2.5V 3.3V 100mA 94%

3.0V 3.3V 100mA 95%

A 1SS315TPH3F RF Schottky Diode is utilized in series
to the coin cell battery holder to provide ESD protection in
the chance that our 3.0V LiCB battery is inserted with
incorrect polarities. The orientation chosen will protect all
other components of our PCB from otherwise harmful
ESD. The 1SS315 is rated at 5V, and 30mA, which
provides ample protection for this project. The final major
component of the power circuitry is a BLM18HE Ferrite
bead that suppresses high frequency noise from within our
power circuitry prior to powering the remaining systems
of our PCB.

II. Reset Switch

The reset switching circuit contains a 2200pF and
47.5kΩ resistor for debouncing of the parallel single-pole
single-throw reset button. This circuitry features the same
ESD protection Schottky Diode that is featured in the
above Power Circuitry section.

III. JTAG Pin Headers

The JTAG Pin Header circuitry consists of 2x5 rows and
columns pin headers that connect to the JTAG_TCKC and
JTAG_TMSC pins of our CC1310 microcontroller. The
JTAG specific pins feature two ESD diodes as featured in
other parts of our PCB to protect our circuitry. One of the
pin headers is utilized as a bypass of a 3V3 connection to
the main circuitry of our PCB.

IV. 24MHz Crystal Oscillator

The CC1310 requires two external crystal oscillator
circuits for use of all components within the
microcontroller. The load capacitors for the 24MHz
crystals was calculated by the following equation:

(1)𝐶
𝑋
= 2(𝐶

𝐿
− 𝐶

𝑠𝑡𝑟𝑎𝑦
)

The above equation (1) provided us with the proper
process to find the values needed for our load capacitance.
The variables in the equation were provided in the specific
data sheet of the 24MHz crystal. The calculated value
returned was 9pF. The max clock operation of the
microcontroller within the PCB is 48MHz, which is
utilized by the 24MHz crystal and doubled internally.

V. 32KHz Crystal Oscillator

The same process and equation (1) were used to
calculate the values of the 32KHz crystal oscillator
circuitry for our PCB. After gathering variables from our
32KHz datasheet, the final calculated value of the load
capacitance was 12pF for this circuitry.

VI. MicroController

The chosen microcontroller unit for this project was the
Texas Instruments CC1310 - Sub-1GHz microcontroller
unit [5]. The CC1310 is a remarkably robust chip from the
Texas Instruments line of RF devices that serve as both a
transceiver, as well as a microcontroller processing unit.
The package that was chosen was the 48-pin F32RGZR.
The major distinction with this package sizing is its
FLASH memory (in kB) and pin count. The smallest flash
size of 32kB was chosen due to the necessary memory
sizing the project required. This choice also minimized
cost, as the major price points for this line of controllers
comes in its memory sizing.

The MCU is based off of a 16-bit ARM© Cortex©-M3
architecture, and is capable of operating in a frequency
range of:

TABLE III: CC1310 operating frequency bands

MINIMUM MAXIMUM UNIT

287 351

359 439

431 527 MHz

718 878

861 1054

The CC1310 has a typical operating voltage range of
1.8-3.8V, with absolute maximum ratings in the range of
-0.3-4.1V. The active mode average current consumption
ranges from 2.0-6.0mA depending on the crystal oscillator
used, transmitting or receiving active, and other peripheral
components in use. The utilization in this project ranges
from 3.3-3.6mA from readings taken. Added benefits of
the CC1310 come in the form of its numerous modules
embedded onto the chip. The above mentioned features
can be found in many other MCUs, but few off-the-shelf
MCUs provide an embedded RF core as robust as the
CC1310. The RF core contains two (2) analog-to-digital
converters, Digital PLL, DSP Modem, separate storage
elements from the overall MCUs architecture, and its own
ARM© Cortex©-M0 processor as well [5].

The remaining portions of the overall microcontroller
circuitry comes in the form of various bypass capacitors
near each power input of our CC1310. Each voltage
supply pin was provided with a 0.1μF bypass capacitor, as
well as a 1.0μF bypass capacitor in close proximity to the
MCU at the output of the power circuitry described above
in (I).

VII. 915MHz Antennas & Impedance Matching

The most important aspect of the Pokéball’s PCB lies
in the RF portion of our schematic. This portion, or
“block”, consists of the two antennas and the RF
impedance matching circuit. This project utilizes only one
antenna that is embedded directly into the PCBs two
copper layers, but a secondary SMA connected antenna
can be utilized in the emergency case of damage being
caused to the embedded antenna. The primary embedded
antenna is a helical 50-Ohm antenna that operates with
highest efficiency in the 915-920MHz range. The nature
of this antenna required that an impedance matching
circuit be tied directly to the RF_N and RF_P pins of the
CC1310 MCU to allow for proper communication to be
achieved. Texas Instruments provides application
information in matching circuit layouts in the CC1310

datasheet, of which we utilized the “Differential
Operation” mode. The use of differential mode provides a
higher noise immunity, and overall less-lossy signals in
both transmission and reception.

The impedance matching circuit, also known as a
matching network, is a combination of active components
(capacitors and inductors) in specific configurations that
“match” impedances between the pin of the MCU and the
915MHz antenna. Utilizing a matching network ensures
that minimal power losses occur within the load. Texas
Instruments specified that a matched impedance of Z =
44+j15Ω. This impedance value, combined with the
Differential Operation mode guidelines given by Texas
Instruments inside of the CC1310 datasheet provided
enough information to create a successful RF Impedance
matching network.

Fig. 5. Differential Mode Impedance Matching Network

In the above section Power & Voltage Regulation is
discussed the operating voltage of 3.3V selected for this
PCB. This was chosen not only due to required power
within the overall PCB, but also in deciding the necessary
transmitting power to properly communicate with the base
station. The CC1310 at 915MHz reaches a maximum
transmitting output power of 14.25dBm at a supply
voltage (VDDS) of 3.3V. The use case of Project Apricorn
utilizes 3.3V at approximately 17.4mA, providing 0.057W
of power, or -12.41dBm of transmitting power. The
sensitivity of the receiver in its tested state by Texas
Instruments was -110dBm. It is expected that this value
would be a few magnitudes higher due to the nature of the
impedance matching circuit components, 3D printed
housing, and other unaccounted for losses.

C. Base Station

The base station will consist of a printed circuit board
that will host three main components. The first component
is the RFID transceiver, RFM95W by HopeRF. The
second component is the ATMEGA328P-AU
microcontroller. The third component is the USB to TTL
serial converter which allows the microcontroller to be
connected using an USB connection to allow

programming to the microcontroller. The software used to
program the microcontroller will be the Arduino IDE.

I. RFM95W RFID Transceiver

The RFM95W is a LoRa module that allows long range
radio frequency communication which will be 915 MHz in
this case. This module is able to achieve a sensitivity of
-140 dBm and an integrated +20 dBMm power amplifier
allows this module to be perfect for our low cost method
of communication. The small size of this module allows to

reduce the overall size
of the base station. The
RFM95W will feature a
breakout board that
allows a U.FL antenna
to be connected to
feature a
communication range
of over 100 meters.

Fig 6: RFM95W Transceiver

II. ATMEGA328P-AU Microcontroller

The ATMEGA328P-AU is a surface mount AVR series
microcontroller. This microcontroller features 8 MHz
clock frequency and an onboard flash memory of 32 KB.
The microcontroller will be powered by 3.3V and is
programmed with a bootloader allowing the user to

program the unit with the
Arduino IDE. The board
allows connection to a
FTDI board which is
described in the next
section. This unit also
features a small form
factor which allows the
size of the base station to
be reduced in size.

Fig 7: ATMEGA32P-AU Microcontroller

III. FT232RL USB to TTL Serial Converter

The FT232RL is a breakout board that allows the FTDI
connection from the microcontroller to be converted from
a USB to allow programming from a PC. The FR232RL
features a small factor breakout board that converts the
processes the signal from USB to FTDI for the
ATMEGA328P-AU microcontroller to accept.

III. SOFTWARE DETAIL

A. Application Stack Specifics

The system’s application will be utilizing a Linux
operating system, Apache HTTP server, MySQL database,
and PHP programming for API creation, commonly
known as a LAMP stack. The LAMP stack is preferable to
other options as it is known for being reliable, fast, and
secure. As the Pokeball was designed around the concept
of being utilized in a Pokemon-themed amusement park,
the LAMP stack would be most beneficial. It is highly
scalable and requires low maintenance and will be able to
maintain all of its core features necessary for the size of an
amusement park. The application and framework for the
LAMP stack is deployed by DigitalOcean.

B. Battle Sequence

One of the major requirements for this project’s success
is a successful battle sequence. The battle sequence will
only commence after the user has successfully logged in
and registered their Pokeball. As this project is based
around the concept of a Pokemon-themed amusement
park, one of the main features of the project is for the user
to roam around the park and “catch” a Pokemon. After the
Pokemon is “caught”, it will be stored in the Pokeball
ready for battle. With this concept in mind, the limitations
of the current system do not allow for roaming and
“catching” Pokemons therefore the Pokeball will
demonstrate its capabilities of detecting a Pokemon and
then storing it.

Once the user is ready to battle their Pokemon, they will
go to the application and begin the battle sequence. The
battle will show a graphic of the user’s Pokemon and the
Pokemon the program decided to be the best opponent
based on the user’s Pokemon’s score and type. The
program will call the four moves associated with the user’s
Pokemon and display each possible move on screen. The
user will be allowed to choose from any of the four moves
and then see how the opponent counter attacks. The four
moves are distinguished by different strengths. Once the
user or opponent has made their move, the program will
automatically update their scores. After one of the
Pokemons have lost all of their health, the application will
designate a winner.

C. Database Specifics

In compliance with the LAMP stack, the system’s vital
data is stored in a MySQL database. This database will be

called “Apricorn”. The project requires three tables for the
best result for the system. The system implements a Users
table, Pokemon table, and Pokeball table.

The Users table stores seven fields: the ID, DateCreated,
DateLastLoggedIn, FirstName, LastName, Login, and
Password. This is the main table connected to the
application as it verifies the user exists and will connect to
the Pokeball.

In the figure below, an example of the Users table is
shown. In this table, due to the size constraints, the field
names have been simplified but still follows the fields
previously mentioned. The SQL command to call all of
the Users was called for the figure but for demonstration
purposes, only two test users are shown below.

SELECT * FROM Users;

ID DateC DLLI FN LN Login Pass

** 22-11-08
02:29:20

22-11-09
23:34:24

Joh
n

Smit
h

JS10
1

** 22-11-08
01:09:32

22-11-09
17:28:37

Ana Smit
h

AD1
5

Fig. 8. Example of MySQL “Users” table in Apricorn
Database.

The Pokemon table stores ten fields: PokemonID,
PokemonName, PokemonType, BasePokemonScore,
WeaknessType, ResistanceType, Move1, Move2, Move3,
and Move4. The PokemonID and PokemonName are
unique to each Pokemon. The PokemonType and
BasePokemonScore standardize the Pokemon and set a
basis of which the application can understand what type of
Pokemon it is. All of the fields, except the PokemonID,
stays true to the Pokemon industry and was found on their
Pokedex, their database of all Pokemons [3]. The Pokedex
characterizes each Pokemon and remains consistent in all
of their products. As this project is modeled around a
Pokemon-themed amusement park, the data for the
Pokemons stays true to the franchise.

In the figure below, an example of the Pokemons table is
shown. The original Pokemons table has been split into
two separate tables for ease of understanding. Due to the
separation, the ID field remains on both tables to
understand which Pokemon the data correlates to. The
SQL command to call all of the Pokemons was used for
the figure but for demonstration purposes, only the first
three Pokemons are shown below.

SELECT * FROM Pokemons;

ID Name Type Score WT RT

1 Bulbasaur Grass,
Poison

318 Water,
Electric,
Grass,
Fighting

Fire,
Ice,
Flying,
Psychic

2 Charmander Fire 309 Fire,
Grass,
Ice, Bug

Water,
Ground,
Rock

3 Squirtle Water 314 Fire,
Water,
Ice,
Steel

Electric,
Grass

ID Move 1 Move 2 Move 3 Move 4

1 Vine Whip Poison
Powder

Synthesis Solar
Beam

2 Ember Dragon
Breath

Flamethrower Flare Blitz

3 Water Gun Water
Pulse

Rain Dance Hydro
Pump

Fig. 9. Example of MySQL “Pokemons” table in Apricorn
Database.

The Pokeball table stores six fields: PokeballID,
isEmpty, UsersID, PokeballScore, PokemonScore, and
PokemonID. The UsersID, PokemonID, and
PokemonScore fields are all foreign keys that are
connected to the Users table and the Pokemon table. Each
Pokeball is only allowed to hold one Pokemon at a time
therefore the isEmpty field allows the program to check if
the Pokeball is allowed to store a Pokemon. The
PokeballScore is unique to each Pokeball and the user
connected as it designates the user’s progress in the
amusement park. This field was created with scalability in
mind as the project is not currently concerned with
competition between users.

In the figure below, an example of the Pokeballs table is
shown below. The two entries shown below are of two
options for the Pokeballs: empty and filled. One Pokeball
is shown with a Pokemon stored within and the associated

PokemonID from the Pokemon table, which designates
that the Pokemon, Bulbasaur, is stored. The second
Pokeball shows that the isEmpty field has a value of 1
therefore the Pokeball is empty and has no Pokemon
stored.

SELECT * FROM Pokeballs;

ID isEmpty Users
ID

Pokeball
Score

Pokemon
Score

Pokemon
ID

** 0x00 ** 100 318 1

** 0x01 ** 0 0 NULL

Fig. 10. Example of MySQL “Pokeballs” table in Apricorn
Database.

The Users table and Pokeball table are both growing
tables as more users use the product. The application will
pull and post data to both tables. After the Pokemon table
was created, it is purely used for pulling data from and
does not require more data to be added unless more
Pokemons are to be added manually.

D. Frontend Specifics

As mentioned earlier, due to the nature of the LAMP
stack, the user interface has been coded in Javascript,
HTML, and CSS.

From a UI perspective, the right combination of
Javascript and CSS can allow for a seamless and intuitive
program that allows moving objects without having to use
too many API endpoints. Instead of each action of the
Pokémon battle and each move within a battle being an
endpoint, the javascript would pull the points associated
from each move and tally the final score. This saves the
programming from crashing. This would also mean that a
great part of the program relies on Javascript to perform
the necessary actions (as most ideal applications do).

In the case of CSS, modern improvements to the
language have allowed the support of: PNG, SVG, JPEG,
GIF, audio, and almost any commonly used media file that
one may commonly see in a given platform. Any media
movement seen within our application may just be the
result of the right combination of CSS elements and
variables. Smooth movement would just have to depend
on the (1) Framework, (2) Network connectivity, and (3)
other files and/or dependencies living within that existing
framework.

E. Arduino to MySQL

As the base station has been previously discussed in
section II.C, Arduino software and hardware has the
ability to update directly into a user interface platform that
supports a database. Originally, the idea was to stick with
TI Instruments to have a uniform brand of technologies (as
this team has operated with TI through most of the
coursework), however; it came to show that Code
Composer Studio (CCS) does not support any form of
MySQL (or any other) database connectivity. If TI
instruments wanted to be used, there would have to be
countless files of code written in C++ to even attempt any
form of connection. This scenario would not even
guarantee a seamless transition between the base-station
and the User Interface so this obstacle was avoided
altogether.

Ultimately, connection from an Arduino code to a
MySQL is a lot more simpler than what it sounds like. All
that is needed is an Arduino integrated development
environment, and an existing MySQL database (preferably
one that is supported by HTTP, for security concerns).
There is an option of connecting to a database ip address,
similar to the free MySQL community database or the
HTTP option where there exists a framework ip address in
which a MySQL database lives such as the one in this
project.

Code for connectivity may will look like:

int HTTP_PORT = 80;

String HTTP_METHOD = "GET";

char HOST_NAME[] = "192.108.0.17";
String PATH_NAME = "/PokeId.php";

Fig. 11. Example of Arduino code to Mysql connectivity in
Apricorn Database.

Here it is shown that the location has been identified as
well as the endpoint that will be performing the insertion
of the RFID into the user interface.

Additionally, the API endpoint on the user interface side
will look like:

<?
$rfid = $_GET['id'];
$other = $_GET['pokemon'];
?>

Fig. 12. Example of API (PHP) endpoint code.

This endpoint is responsible for selecting the Pokemon
from the databases mentioned earlier that will then be
assigned to said player.

F. Final Software Flow

Being that this is meant to support a commercial and
entertainment environment, the program allows for any
party of interest to register for an account. In order to have
any interaction with a Pokémon, a user must be in
possession of a Pokéball. That Pokéball contains the
PokéID necessary to discover which Pokémon has been
assigned to that player as well as enter battle. After any
sort of playtime and battle (to where a score can officially
be officially updated), it will then update the leaderboard,
which is accessible for all players.

VII. CONCLUSION

All of the mentioned components and systems have
been developed in order to ensure successful
implementation of the Pokéball scheme. While different
approaches and changes have been made, they have shown
to provide a learning experience for the assembly of a
design of this scale. Furthermore, if worked upon in the
future, there are aspects that can be improved on to
increase efficiency: connectivity, frequency emitting and
receiving responses, as well as software playtime.

BIOGRAPHY

Rebecca Casimir is currently a senior
attending the University of Central Florida.
Her intended degree is a Bachelor’s of
Science in Computer Engineering. As of
today she is currently interning at Walt
Disney Studios in cyber security and she

plans on continuing to transition to full time after
graduating in Fall 2022.

Kalindi Desai is currently a senior attending
the University of Central Florida. Her
intended degree is a Bachelor’s of Science

in Computer Engineering. As of today, she is currently
interning with Ximple Solutions, a company that designs
and develops cloud-based ERP software. She plans on
working with Ximple full time after graduating in Fall
2022.

Trey Sandefur is a senior at the University
of Central Florida. He will be finishing his
Bachelor’s of Science in Electrical
Engineering at the conclusion of the Fall
2022 semester. He will be transitioning
from an Electrical Engineering Intern

position at AOA into a full-time Associate Show Producer
position. AOA serves as a themed entertainment
production firm that has helped bring world-class
attractions, resorts, and experiences to life.

Darren Yong is currently a senior at the
University of Central Florida. He will
receive his Bachelor’s of Science in
Electrical Engineering in December of
2022.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of Dr.s Samuel Richie and Lei Wei; University of
Central Florida.

A sincere gratitude is extended to all of the professors
and mentors who have been able to guide the authors
through coursework and projects. If not for learning these
essential concepts, this design would not be possible.

Lastly, the authors would like to thank their family,
peers, and close ones who have supported them
throughout their college careers.

REFERENCES

[1] W. H. Cantrell, “Tuning analysis for the high-Q class-E
power amplifier,” IEEE Trans. Microwave Theory & Tech.,
vol. 48, no. 12, pp. 2397-2402, December 2000.

[2] Neaman, Donald A, “Microelectronics Circuit Analysis and
Design” 2009 McGraw-Hill Education.

[3] “The Official Pokémon Website.” Pokemon.com,
https://www.pokemon.com/us/pokedex/.

[4] “Texas Instruments” ti.com, https://e2e.ti.com/support
[5] Texas Instruments, “CC1310 SimpleLink™

Ultra-Low-Power Sub-1 GHz Wireless MCU”, SWRS181D
datasheet, Jul. 2018.

https://www.pokemon.com/us/pokedex/
https://e2e.ti.com/support

